首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30011篇
  免费   2795篇
  国内免费   1532篇
工业技术   34338篇
  2024年   55篇
  2023年   448篇
  2022年   767篇
  2021年   975篇
  2020年   1048篇
  2019年   908篇
  2018年   870篇
  2017年   1078篇
  2016年   1212篇
  2015年   1282篇
  2014年   2017篇
  2013年   1974篇
  2012年   2201篇
  2011年   2422篇
  2010年   1851篇
  2009年   1886篇
  2008年   1720篇
  2007年   1848篇
  2006年   1691篇
  2005年   1310篇
  2004年   1091篇
  2003年   975篇
  2002年   799篇
  2001年   684篇
  2000年   574篇
  1999年   468篇
  1998年   345篇
  1997年   307篇
  1996年   312篇
  1995年   241篇
  1994年   212篇
  1993年   145篇
  1992年   110篇
  1991年   105篇
  1990年   76篇
  1989年   69篇
  1988年   50篇
  1987年   39篇
  1986年   34篇
  1985年   26篇
  1984年   24篇
  1983年   16篇
  1982年   21篇
  1981年   18篇
  1980年   4篇
  1979年   6篇
  1978年   3篇
  1959年   3篇
  1955年   3篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
71.
Tunneling nanotubes (TNTs) are recognized long membrane nanotubes connecting distance cells. In the last decade, growing evidence has shown that these subcellular structures mediate the specific transfer of cellular materials, pathogens, and electrical signals between cells. As intercellular bridges, they play a unique role in embryonic development, collective cell migration, injured cell recovery, cancer treatment resistance, and pathogen propagation. Although TNTs have been considered as potential drug targets for treatment, there is still a long way to go to translate the research findings into clinical practice. Herein, we emphasize the heterogeneous nature of TNTs by systemically summarizing the current knowledge on their morphology, structure, and biogenesis in different types of cells. Furthermore, we address the communication efficiency and biological outcomes of TNT-dependent transport related to diseases. Finally, we discuss the opportunities and challenges of TNTs as an exciting therapeutic approach by focusing on the development of efficient and safe drugs targeting TNTs.  相似文献   
72.
Hydrogen generation through solar-water splitting is expected to address the global energy crisis by providing a source for a safer and sustainable alternative fuel. Herein, we report a facile synthesis of Cu2O nanowires and show that the magnetic field could influence the nanowires’ distribution and alignment. Orientation of nanowires was observed to become more inclined towards the magnetic field lines as the values of full-width at half maximum decreased from 140° to 46.2° with the increase in the field strength. Crystallographic, morphological, optoelectronic, and photoelectrochemical properties of the constructed p-n homojunction were analyzed by using different characterization techniques. A high built-in potential of +0.93 V vs. RHE was observed for a 50 nm layer of n-Cu2O over p-Cu2O nanowires that resulted in a significantly high photocurrent density of −7.42 mA/cm2. The stability in the photoelectrochemical medium was maintained for 14 h, generating 20 mmol/cm2 of H2.  相似文献   
73.
This paper considers thermochemical recuperation (TCR) of waste-heat using natural gas reforming by steam and combustion products. Combustion products contain steam (H2O), carbon dioxide (CO2), and ballast nitrogen (N2). Because endothermic chemical reactions take place, methane steam-dry reforming creates new synthetic fuel that contains valuable combustion components: hydrogen (H2), carbon monoxide (CO), and unreformed methane (CH4). There are several advantages to performing TCR in the industrial furnaces: high energy efficiency, high regeneration rate (rate of waste-heat recovery), and low emission of greenhouse gases (CO2, NOx). As will be shown, the use of TCR is significantly increasing the efficiency of industrial furnaces – it has been observed that TCR is capable of reducing fuel consumption by nearly 25%. Additionally, increased energy efficiency has a beneficial effect on the environment as it leads to a reduction in greenhouse gas emissions.  相似文献   
74.
A concentrated solar absorber with finned phase change materials was experimentally studied using a Scheffler type parabolic dish concentrator. The absorber's inner surface was fixed with hollow cylindrical containers filled with phase change material (PCM) for heat transfer augmentation. The absorber's selected PCM was acetanilide (Melting point of 116 °C)—the cylindrical capsules protruding into the fluid side to create turbulence and mixing and acting as fins. The absorber surface temperature was observed to be about 130–150 °C during the outdoor tests while passing fluid through the absorber. The fluid flow rate varied from 60 to 100 kg/h during the outdoor experiments. The peak energy and exergy efficiency of parabolic dish collector (PDC) at the fluid flow rate of 80 kg/h with PCM integrated solar absorber was found to be about 67.88% and 6.96%, respectively. The integration of cylindrical PCM containers resulted in more heat transfer augmentation in the solar absorbers. The optimized solar absorber could be suitable for various applications like steam generation, biomass gasification, space heating, and hydrogen generation.  相似文献   
75.
In the electro-deoxidation process, carbon parasitic reaction (CO32- + 4e-=C + 3O2-) usually occurs when using carbon materials as the anode, which leads to increase of the carbon content in the final metal and decrease of the current efficiency of the process. The aim of this work is to reduce the negative effect of carbon parasitic reaction on the electrolysis process by adjusting anode current density. The results indicate that lower graphite anode area can achieve higher current density, which is helpful to increase the nucleation site of CO2 bubbles. Most of CO2 would be released from the anode instead of dissolution in the molten CaCl2 and reacting with O2- to form CO32-, thus decreasing the carbon parasitic reaction of the process. Furthermore, the results of the compared experiments show that when the anode area decreases from 172.78 to 4.99 cm2, CO2 concentration in the released gases increases significantly, the carbon mass content in the final metal product decreased from 1.09% to 0.13%, and the current efficiency increased from 6.65% to 36.50%. This study determined a suitable anode current density range for reducing carbon parasitic reaction and provides a valuable reference for the selection of the anode in the electrolysis process.  相似文献   
76.
Using simple and efficient methods to synthesize biological activated carbon catalysts (ACCs) with the decomposition of hydrogen iodide (HI) in the sulfur-iodine cycle as a typical reaction is urgently needed for the commercialization of hydrogen energy production and development. In this study, a series of ACCs with different specific surface areas (SSAs) and pore structures are prepared by comparing and controlling the changes in carbonization and activation methods of activated carbon (AC) preparation process. Hierarchical porous AC with larger SSA has higher HI decomposition efficiency. The representative samples H240H1h and H240C4h are hierarchical porous ACCs with 48.96% and 46.88% micropores, respectively, and have the highest catalytic activity in the entire series. The nitrogen adsorption and desorption curve is combined with pore size distribution data and analyzed using the capillary aggregation (Kelvin) and monolayer adsorption (Langmuir) theories. And ACC pore grading coefficient—which can improve data visualization—is introduced.  相似文献   
77.
Cell temperature and water content of the membrane have a significant effect on the performance of fuel cells. The current-power curve of the fuel cell has a maximum power point (MPP) that is needed to be tracked. This study presents a novel strategy based on a salp swarm algorithm (SSA) for extracting the maximum power of proton-exchange membrane fuel cell (PEMFC). At first, a new formula is derived to estimate the optimal voltage of PEMFC corresponding to MPP. Then the error between the estimated voltage at MPP and the actual terminal voltage of the fuel cell is fed to a proportional-integral-derivative controller (PID). The output of the PID controller tunes the duty cycle of a boost converter to maximize the harvested power from the PEMFC. SSA determines the optimal gains of PID. Sensitivity analysis is performed with the operating fuel cell at different cell temperature and water content of the membrane. The obtained results through the proposed strategy are compared with other programmed approaches of incremental resistance method, Fuzzy-Logic, grey antlion optimizer, wolf optimizer, and mine-blast algorithm. The obtained results demonstrated high reliability and efficiency of the proposed strategy in extracting the maximum power of the PEMFC.  相似文献   
78.
To develop an operating strategy for maximizing the energy efficiency of open-cathode proton exchange membrane fuel cells (OCPEMFCs), the present study investigates the effect of the fan speed on the stack performance and energy efficiency using a commercially available OCPEMFC system. The temperature, voltage, and current of the stack are monitored, and the energy efficiency is calculated at various stack power levels. The results of the system with a lab-developed controller are compared with the commercial system with a built-in controller. It is found that the fan speed should be minimum to reduce the auxiliary power consumption and that the stack should be efficiently heated to enhance the electrochemical reaction. In addition, it is noticed that the stack performance dramatically drops when the stack temperature is above 75 °C, due to the membrane dehydration. Overall, the results show that the stack temperature is an important indicator for controlling the fan speed for optimization of energy efficiency, and for stack powers of 50, 60, 70, and 80 W, the peak values of energy efficiencies are 38.0%, 38.3%, 38.5%, and 38.3% at the duty cycles of 0.2, 0.2, 0.25, and 0.3, respectively, which are 28–38% higher than the commercially available OCPEMFC system.  相似文献   
79.
A novel navigation signal design method based on spread code time shift position modulation was proposed,which inherits the idea of separating the pilot signal component and the data signal component,and applies time shift position of the spread code to carry data information.The old pattern of using carrier phase to carry information was changed,the power efficiency of data signal components and the performances of the satellite navigation system were improved.Theoretical analysis and simulation results show that the proposed method can significantly improve the transmission rate of data signal component or power ratio of the pilot signal component to data signal component without increasing the total transmission power.Then,the transmission rate,acquisition and tracking performance,positioning accuracy and other technical indicators of the satellite navigation system can be further improved.  相似文献   
80.
为解决某矿破碎筛分车间粉尘污染问题,采用喷嘴雾化理论设计喷嘴雾化降尘实验,并根据实验结果在该矿破碎筛分车间应用了超声雾化降尘技术。实验及应用结果表明:超声雾化发生器的液体雾化装置,气体辅助雾化装置和雾束形成器的几何结构影响喷雾的雾化参数与流量特性,液体雾化器与气体辅助雾化装置影响液体初次破碎与雾化,雾束形成器影响雾滴的二次破碎与约束液束形态;超声雾化发生器的气液比与气液压力比存在幂函数关系,幂指数为-1.09;雾滴粒径越小,雾滴的降尘效率越高,当雾滴D50为23 μm时,雾滴的降尘效率在94%以上;在破碎筛分车间振动筛给料皮带和筛上皮带受料点布置超声雾化发生器,超声雾化发生器开启后,车间内粉尘浓度降低至586~10.54 mg/m3,降尘效率在71.38%以上。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号